
Ensure Quality Early and Often with
Visual Studio Team System 2008
White Paper

May 2008

For the latest information, please see www.microsoft.com/teamsystem

http://www.microsoft.com/teamsystem

This is a preliminary document and may be changed substantially
prior to final commercial release of the software described herein.

The information contained in this document represents the current
view of Microsoft Corporation on the issues discussed as of the date
of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of
any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT
MAKES NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of
the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarks,
copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written
license agreement from Microsoft, the furnishing of this document
does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, Excel, Outlook, Visio, and Visual Studio are trademarks of
the Microsoft group of companies

All other trademarks are property of their respective owners.

Introduction .. 1

Quality Before Coding .. 2

Quality During Coding .. 5

Quality after Coding .. 10

Conclusion ... 12

About the Author ... 13

CONTENTS

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 1

Developing quality applications is critical to business success as businesses

depend on these applications when deployed in production. One of the

biggest challenges for developers today is that code that is well designed,

implemented, and unit tested often fails in production mission critical

environments. This is supported by the fact that 74% of the problems found

in production environments are found by end users. How then can

developers and testers ensure that software quality is maintained and

delivered across the application life cycle?

Microsoft
®
 Visual Studio

®
 Team System 2008 introduces new features and

builds on existing ones to enhance the development experience across the

application life cycle. One key area of software development has always

been quality. In the past this meant performing extensive tests on a working

version of the code, or at least working subsets of the code. While such

functional tests may still be performed, it’s better to start ensuring quality

earlier in the process. Visual Studio Team System 2008 contains a wealth of

features that help ensure quality before coding begins, during the coding

process itself, and after coding is finished.

Ensuring quality at various stages makes sense both in terms of schedules

and budgets. Analysts and architects verify the design and that it will perform

on the current architecture. Developers test code while it is being written, see

how much code is actually executed by tests, and perform analysis checking

for known performance or security issues. Testers automate Web and load

tests and check the code throughout the process. Any problems found can

be flagged as bugs and assigned to people through the Team Foundation

Server’s work item tracking.

INTRODUCTION

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 2

When most people think of ensuring quality in a software development

application, they think of testing the application at various stages of

completeness by testing specific tasks; in other words, functional testing.

More recently, there has been a rise in testing during the development phase

using unit testing. However, there are quality tasks that can be performed

before coding begins, and these tasks are supported by Visual Studio Team

System 2008.

Scenarios and Requirements

Requirements Gathering

Visual Studio Team System 2008 includes templates for capturing scenarios

and requirements, in both Word and Excel formats. Companies are free to

modify the existing templates or upload their own. Documents that have

already been created can also be uploaded to become part of the project.

Documenting the requirements and user scenarios up front helps document

the features the application must implement in order to be successful. Storing

the documents as part of the project helps ensure that the documents are

easy to find and requirements are always at hand. Figure 1 shows the

Requirements folder in the Team Explorer and the Scenario Description

document template provided by Team System.

Figure 1. Visual Studio Team System 2008 provides templates for requirements

gathering tasks.

QUALITY BEFORE

CODING

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 3

Mapping Scenarios to Work Items

After scenarios and requirements are documented, those scenarios and

requirements can be created as work items in Team System. Work items

enable managers to track the progress of a project and for architects,

developers, and testers, to see what tasks remain. The work items should

encompass the requirements and scenarios documented earlier. Depending

on the process template used, work items can be categorized as a Bug,

Quality of Service Requirement, Risk, Scenario, Task, or a type of your own

definition. When it comes to looking at quality, the most common work items

are bugs, quality of service requirements, and scenarios. Bugs usually come

later in the process, falling out of testing or actual customer usage. Quality of

service requirements can encompass such items as the speed at which

certain items must complete. Scenarios might include use cases in which a

customer walks through a particular task, such as adding a new order.

Assigning Work Items to Team Members

Once work items have been created, they can be assigned to different team

members. These team members may include application architects,

infrastructure architects, developers, database professionals, and testers.

Each person on a project is able to see all tasks assigned to them at any

time, and tie any work they do to one or more tasks. This provides a

consistent visibility into the project across various teams ensuring project

success. In this way, the team is focused on resolving the issues that have

the greatest impact on the system, enforcing quality throughout the life cycle.

Verifying the Architecture

One of the great features of Visual Studio Team System 2008 Architecture

Edition (and, of course, in Team Suite) is that the application architecture can

be defined up front using diagrams that show how the components will be

separated and how they will communicate. This enables application

architects to show what services the application will use, what the front-ends

look like, and how the front-ends, services, and database communicate.

The infrastructure architect can likewise lay out the infrastructure of the data

center, including what services run on different servers and how the services

communicate. The servers can include the definitions of the operating

system version, service pack levels, and so forth.

Finally, the application architecture can be placed onto the infrastructure

architecture to ensure that the application, as designed, will work on the

infrastructure that exists. This can identify potential issues early, such as

application dependencies on service pack levels or .NET Framework

versions that are not yet installed on the servers. Figure 2 shows an example

of an application mapped onto the logical infrastructure architecture.

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 4

Figure 2. Mapping an application architecture to the infrastructure ensures that

all the pieces are in place to support the proposed system.

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 5

In the previous section, you saw how Visual Studio Team System 2008 helps

project managers, architects, developers, and testers assure that quality was

in place before coding began. Work items were set up to ensure that quality

of service objectives would be tracked, and the application architecture was

designed and then placed on the infrastructure architecture to ensure that it

would deploy and run on the hardware that was in place.

The next step is to work with the source code, and here Visual Studio Team

System 2008 includes a wealth of tools aimed at supporting and enforcing

the quality of the code. These features include unit testing, static code

analysis, performance profiling, and more.

Source Code Control

Working with source code almost always means a need for source code

control. Even small projects can benefit from the code archiving, differencing,

and searching capabilities provided by the source code control found in

Visual Studio Team System 2008. A great feature in Visual Studio Team

System 2008 is the ability to access the version control system over the

Web, using a separate add-in.

Branching and Merging

One of the techniques that can be of great help in developing systems is

code branching. Before adding a new feature, the code is branched, meaning

a copy is made. The new feature is implemented in a separate branch, and

work on the main ―trunk‖ can continue without being affected by the

development of the new feature. Periodically the code in the branch can be

refreshed to synchronize it with any changes to the main trunk of code. After

the new feature is coded and fully tested, the new branch can be merged

back into the main trunk. In this way, new features are not added to the main

product until they have been tested; this has the added benefit that features

that fail to make the grade can be abandoned without having to remove any

code from the main trunk.

Restoring Previous Versions of Code

As helpful as branching and merging may be, there are times when new

code is compiled and tested and the decision is made to roll back to the

previous version. Source code control doesn’t simply roll back as it used to,

as this doesn’t enable proper tracking under laws such as Sarbanes-Oxley.

Instead, Visual Studio Team System 2008 gives the appearance of rolling

back by taking the chosen previous version and making it the current version

with a new version number. This helps ensure that the system is not taken

offline due to updates that cause issues.

Code Analysis

Static Code Analysis is a process by which code is examined in more detail

than by the compiler—the code is actually checked against a set of rules.

QUALITY DURING

CODING

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 6

The results of the checks can raise warnings and errors. This is similar to a

structured code walkthrough except it is performed programmatically rather

than by a room full of people.

Visual Studio Team System 2008 enhances code analysis by adding static

analysis to T-SQL code and checking for quality and security issues. Code

analysis rules for other languages have been enhanced to increase the

accuracy of the suggestions.

Developers can perform code analysis on an ad hoc basis or a project

manager can require it as part of the check in process through a check-in

policy in Team Foundation Server. This ensures that someone has examined

the code and has addressed any errors or warnings. Figure 3 shows that

even simple code can generate warnings, and that you can turn specific

checks on and off as needed.

Figure 3. A simple C# class generates six warnings (bottom) while the rules that

are checked can be turned on and off (upper right).

Performance Profiling

Businesses always want applications to run as quickly as possible, and

developers often compete amongst themselves to have code that runs as

efficiently as possible. Code that runs slowly can be a challenge to debug,

and one tool to help identify problem areas is the Visual Studio Team System

Profiler.

Identifying Performance Bottlenecks with Hot Path

Using the Performance Profiler in Team System, developers can create

performance reports that show the time spent in each part of the application.

Visual Studio 2005 Team System supported this feature but finding the

slowest areas of the application often meant opening a call tree view and

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 7

following the slowest path, expanding until you located the bottleneck. This

could take a tremendous amount of time as the call tree could be deeply

nested (meaning the offending method or framework call might be twenty

levels deep). Hot Path analysis, new to Visual Studio Team System 2008,

adds a toolbar button that automatically expands the call tree to identify

areas that have high inclusion times compared to siblings.

Collecting Windows Counters

Visual Studio Team System 2008 features profiling which developers can

use to collect Windows counter information while an application runs. During

a performance session, developers can choose to collect various

performance counters, such as memory and CPU usage. After running the

application, a developer can examine performance reports to show the

values of those metrics during runtime. Figure 4 shows how to collect various

counters as part of profiling an application.

Figure 4. You can collect Windows counters during the profiling of an

application, showing such items as the memory and CPU usage as the

application runs.

Unit Testing

When most people think of ensuring quality for applications, they think of

functional testing; that is, testing the application after it is complete to one

degree or another. However, there has been a trend over the past 7-10 years

to test the code early and often during the development phase using unit

testing. This is done using the same language as the code rather than

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 8

learning a new testing language, and it is set up in such a way that tests can

be run at nearly any time to verify that the code, as written, passes the tests

that have been created. At first, this helps ensure that the code is functioning

properly, assuming the tests cover the required functionality of the code.

Later, the unit tests help support changes because developers can always

rerun existing tests to make sure they have not broken functionality that used

to work.

Test-Driven Development

Test-Driven Development (TDD), also known as Test-First Development, is a

development paradigm that says a developer writes a test before writing any

code. After they’ve written the test, the developer writes just enough code to

get the test to pass. Once the test passes, the developer writes the next test

and writes enough code to get that test to pass, making sure that no previous

tests break. Through this process, a suite of unit tests are created and the

code is verified as passing all tests.

First class support for unit tests can be found in Visual Studio Team System

2008 as well as the Visual Studio Professional 2008 products. Through the

creation of test projects, users can add unit tests to a solution and then run

them at any time, showing success or failure through a simple green light/red

light metaphor. Of course, unit tests can also be run as part of an automated

build process.

Real-world Quality from TDD

Unit testing can certainly be done without implementing TDD, but TDD has

been proven effective in university studies. Dr. Laurie Williams, a professor at

North Carolina State University, performed a study that found that defects

identified by customers were 30% lower for a system using TDD than for a

previous version of the system that did not . Another study found that 95.8%

of developers felt that TDD reduced the debugging effort .

Code Coverage

When creating unit tests, the goal is to write a test and then write the code

that causes the test to pass. In reality, developers often write more code than

is required and therefore might write code for tests which do not exist. A

common example is the case of an If statement in which one branch is never

tested. Team System includes a code coverage tool that shows the

percentage of code covered by tests, the percentage not covered, and more

importantly, color codes the source code to easily identify lines that were and

lines that were not touched by unit tests. Figure 5 shows the code coverage

results for two simple methods in a Visual Basic class.

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 9

Figure 5. Code coverage results shows that Else portion of the If statement is

not touched by any of the unit tests that were just run.

Database Unit Testing

While unit testing is normally considered a tool for source code in

programming languages such as C# and Visual Basic, there are applications

for unit testing with T-SQL in areas such as triggers and stored procedures.

Visual Studio Team System 2008 Database Edition includes tools to create

and run unit tests for stored procedures and triggers. The unit test, as well as

other database artifacts – including database schemas – in source code

control. This enables developers to treat databases as first-class citizens with

the source code, ensuring that changes to stored procedures and triggers

can be tested and then deployed only if all tests pass.

Reporting Progress to Stakeholders

Project stakeholders, be they inside the IT organization or in other areas of

the business, are able to access a project portal that is created as part of the

Team System project. This portal is hosted in SharePoint and contains a

series of preconfigured SQL Server Reporting Services reports. By using

these reports, stakeholders can monitor the progress of the application

through bug tracking statistics, testing success rates, and more. These

reports are always up to date because they access the Team System

database in real time. This provides an excellent resource for customers

throughout the organization to keep apprised of the project’s progress.

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 10

So far, quality checks have been done before any coding started, and then

throughout the coding process. Naturally, testing can be continued when the

application is turned over to a testing team. Fortunately, Visual Studio Team

System and Team Foundation Server can automate the building and testing

of applications to a large degree.

Automated Builds and Testing

Visual Studio Team System includes an automated build engine called Team

Build. This build engine enables a variety of build definitions to support

regularly scheduled builds, release builds and an agile technique known as

continuous integration builds—a process in which builds occur either

immediately after a check-in, or in short intervals, queuing a small number of

check-ins before a build. A Team Build definition can be created to enable

one to check out the source code, compile it, run static code analysis and

unit tests, deploy the code to a test server, run Web and load tests, and

publish results of the build and associated tests.

Web and Load Tests

There are a couple of different kinds of tests that can occur after the

application has been created. These include Web tests, which may or may

not be used to perform load tests.

Web Tests

Web tests are a way to test the functionality of a Web application.

Developers often record such a test when a user walks through the process

of using a Web application, which records the HTTP Requests and

Responses. In addition, Web tests can support ASP.NET AJAX, enabling for

testing of rich Web applications that include client-side code. Team System

can do more than simply record a Web test—it can enable developers to pull

selections from a database, XML file, or CSV file. For example, imagine that

a user drops down a combo box and selects an item. The test can be

configured to pull the items from a database or file and randomly select one

for each test, providing a more realistic test suite by simulating the selections

of different values rather than always choosing just the one that the user

picked during the recording.

Load Tests

Load testing in Team System is powerful because it enables for Web tests,

manual tests, generic tests, or any combination of such tests to be

automated. Team System 2008 introduces a new User Pace test mix, which

enables developers to control the mix between different test types and the

number of simulated users can increase over time. For example, one test

may test the order entry system while another may test the account update

feature. Each user could be set to run ten order entry tests but just one

account update test every hour. Load tests are useful for finding bottlenecks

QUALITY AFTER CODING

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 11

not just in the application (recall the ability to add performance counters to

code) but also hardware bottlenecks. Different browsers can be simulated

with Web tests and performance counters from target machines can be

captured for later analysis of the load resulting from different browsers and

different access methods. Different network bandwidth types can be

simulated to cover local and remote access scenarios and check for both

performance and load issues.

Once the load testing has started, performance can be monitored in real

time. After the tests are over, statistics are captured for review and analysis.

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 12

Visual Studio Team System 2008 provides a series of powerful, integrated

tools that assist organizations with ensuring the highest quality in their

software development throughout the application life cycle. From up front

planning through coding to delivery, people at every phase verify, test,

profile, monitor, and track quality. Even those outside the IT organization can

see the progress through the project portal that is automatically updated as

the project progresses.

Architects design the physical application and apply it to the existing

architecture (or design a new architecture to support the application.) The

design can be verified before a single line of code is written. Developers

create unit tests to not only ensure that their code works, but to verify that

future work does not break existing functionality. Developers can also see

what parts of their code are not covered by unit tests, quickly find

performance bottlenecks, and obtain suggestions for improving their code.

Testers create and run automated tests to check for performance and

functionality issues, monitoring a variety of counters on remote servers and

in the application. Anyone in the process or even outside of IT can monitor

the progress by tracking bugs, test results, and more, using the Team

Foundation Server portal.

Visual Studio Team System 2008 breaks new ground in integrated support

for built-in quality features. The tools and features provide an end-to-end

solution for verifying and testing the application, and supporting the

development team at each step by providing timely and actionable feedback.

CONCLUSION

 White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 13

Craig Utley (craig@solidq.com) is a mentor with Solid Quality Mentors and a

former Program Manager on the SQL Server Customer Advisory Team at

Microsoft. He splits his time between providing business intelligence

solutions and consulting on developer productivity issues, including design

patterns, test-driven development, and agile methodologies.

This white paper was developed in partnership with A23 Consulting.

ABOUT THE AUTHOR

