Microsoft®

i Stu o

Team System

Ensure Quality Early and Often with
Visual Studio Team System 2008
White Paper

May 2008

For the latest information, please see www.microsoft.com/teamsystem

Microsoft

http://www.microsoft.com/teamsystem

This is a preliminary document and may be changed substantially
prior to final commercial release of the software described herein.

The information contained in this document represents the current
view of Microsoft Corporation on the issues discussed as of the date
of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of
any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT
MAKES NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of
the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarks,
copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written
license agreement from Microsoft, the furnishing of this document
does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, Excel, Outlook, Visio, and Visual Studio are trademarks of
the Microsoft group of companies

All other trademarks are property of their respective owners.

CONTENTS INEE OO UCTION ettt ettt ettt ee ettt e et e e e et et e et e et e eeeseeenenaens 1

Quality BEfore Codingcooccviviiiiie et r e e e 2
Quality DUING COAING ..vvveeiiiiiieiiiiiee ettt 5
Quality after COAING .uuvviiieeii i 10
CONCIUSTON .ttt 12

ADOUL The AULNOT ceeeeeeeeee e e e 13

INTRODUCTION

Developing quality applications is critical to business success as businesses
depend on these applications when deployed in production. One of the
biggest challenges for developers today is that code that is well designed,
implemented, and unit tested often fails in production mission critical
environments. This is supported by the fact that 74% of the problems found
in production environments are found by end users. How then can
developers and testers ensure that software quality is maintained and
delivered across the application life cycle?

Microsoft® Visual Studio® Team System 2008 introduces new features and
builds on existing ones to enhance the development experience across the
application life cycle. One key area of software development has always
been quality. In the past this meant performing extensive tests on a working
version of the code, or at least working subsets of the code. While such
functional tests may still be performed, it's better to start ensuring quality
earlier in the process. Visual Studio Team System 2008 contains a wealth of
features that help ensure quality before coding begins, during the coding
process itself, and after coding is finished.

Ensuring quality at various stages makes sense both in terms of schedules
and budgets. Analysts and architects verify the design and that it will perform
on the current architecture. Developers test code while it is being written, see
how much code is actually executed by tests, and perform analysis checking
for known performance or security issues. Testers automate Web and load
tests and check the code throughout the process. Any problems found can
be flagged as bugs and assigned to people through the Team Foundation
Server’s work item tracking.

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 1

QUALITY BEFORE
CODING

When most people think of ensuring quality in a software development
application, they think of testing the application at various stages of
completeness by testing specific tasks; in other words, functional testing.
More recently, there has been a rise in testing during the development phase
using unit testing. However, there are quality tasks that can be performed
before coding begins, and these tasks are supported by Visual Studio Team
System 2008.

Scenarios and Requirements

Requirements Gathering

Visual Studio Team System 2008 includes templates for capturing scenarios
and requirements, in both Word and Excel formats. Companies are free to
modify the existing templates or upload their own. Documents that have
already been created can also be uploaded to become part of the project.
Documenting the requirements and user scenarios up front helps document
the features the application must implement in order to be successful. Storing
the documents as part of the project helps ensure that the documents are
easy to find and requirements are always at hand. Figure 1 shows the
Requirements folder in the Team Explorer and the Scenario Description
document template provided by Team System.

#2 No page to display - Microsoft Yisual Studio &) x|
File Edt YWiew Buld Team Data Tools Test Deweloper Window Help
e =1" 0] B9 -0 - 3B b -l =) FREGEEE

Back] W A" | @ HowDoI + Q Search | Indsx &3 Contents [5]Help Favorites %, MSDH Forums (A, _
M rians b dicrlaw No page to display |1 nane b disnlaw F Skark pans | v x
A 5cenario®o20Description[1].doc - Microsoft Word Viewer I =T e INES 5
Fie Edt Wew Tools Window Help X | .||l @ ORCASBETAZIFS
] ST O S R DR R |7 (] My Favaries

Alternate Personas

[Description: There can be many personas that behave in same way with respect to
a scenario. However, carefully consider the characteristics of a persona befare
adding it to this list. Does it represent the same type of user (such as a navice vs. a
powier user)?

[xac00 1 3¢ | smioptg saaies E;J

Example: Sara Alexander would also use the search functionality in the same way.
Since she is looking for the best price, she would compare prices on the items that
were returned in the list and would like to be able to sort them by price.]

B (g Test
- [Work Iemms
- [LZr Documents
(L3l Development
(3 Process Guidance
|3 Project Management
= [Requirements
i B persona.doc
i] QoS Requirements,xls
Scenario Description. doc
i] Scenarios.xls
i @3 Vision. dac
|5 Securiy
|3 Shared Documents

[Persona [Deviations (if applicable) | 0 ot
| Enter the persona name hers. | Enter the dewiations hers | 3 Reports
- [Builds
+ |2 Source Contral
Scenario Description
[Description: The Scenario Description is a step in the process that a persona uses J
to achieve a goal. It is a concrete instance of a pattern which is intended to be
implemented. A scenario description has three parts, an introduction, the description
of the new functionality, and a conclusion
Since a scenario lives inthe contest of a working system, the introduction may serve
to position the scenario. This is an outline of the events that lead up to the -
I D B S T ST RN F SO
L I B
Page 3 Sec 2 5i7 At n cl 4
I - || [E350ltion Bxpl... | 7 Team Explorer [Class o |

Done

distart| | (@ @ | o hopage todisplay - Micr... ||] Scenario®20Descript...

gathering tasks.

Figure 1. Visual Studio Team System 2008 provides templates for requirements

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008

Mapping Scenarios to Work Items

After scenarios and requirements are documented, those scenarios and
requirements can be created as work items in Team System. Work items
enable managers to track the progress of a project and for architects,
developers, and testers, to see what tasks remain. The work items should
encompass the requirements and scenarios documented earlier. Depending
on the process template used, work items can be categorized as a Bug,
Quality of Service Requirement, Risk, Scenario, Task, or a type of your own
definition. When it comes to looking at quality, the most common work items
are bugs, quality of service requirements, and scenarios. Bugs usually come
later in the process, falling out of testing or actual customer usage. Quality of
service requirements can encompass such items as the speed at which
certain items must complete. Scenarios might include use cases in which a
customer walks through a particular task, such as adding a new order.

Assigning Work Items to Team Members

Once work items have been created, they can be assigned to different team
members. These team members may include application architects,
infrastructure architects, developers, database professionals, and testers.
Each person on a project is able to see all tasks assigned to them at any
time, and tie any work they do to one or more tasks. This provides a
consistent visibility into the project across various teams ensuring project
success. In this way, the team is focused on resolving the issues that have
the greatest impact on the system, enforcing quality throughout the life cycle.

Verifying the Architecture

One of the great features of Visual Studio Team System 2008 Architecture
Edition (and, of course, in Team Suite) is that the application architecture can
be defined up front using diagrams that show how the components will be
separated and how they will communicate. This enables application
architects to show what services the application will use, what the front-ends
look like, and how the front-ends, services, and database communicate.

The infrastructure architect can likewise lay out the infrastructure of the data
center, including what services run on different servers and how the services
communicate. The servers can include the definitions of the operating
system version, service pack levels, and so forth.

Finally, the application architecture can be placed onto the infrastructure
architecture to ensure that the application, as designed, will work on the
infrastructure that exists. This can identify potential issues early, such as
application dependencies on service pack levels or .NET Framework
versions that are not yet installed on the servers. Figure 2 shows an example
of an application mapped onto the logical infrastructure architecture.

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 3

icrosoft Yisual Studio

Ele Edt Yiew Project Buid
A-E-SHd s
% = 100% - &5

-3 x

Team Debug Diagram Data Jools Test Develpper Window
a9 - - S5 b oebug ~ Any CPU
a =

Help
- | 2

LogicalDatacenter L idd [LDD]

Defaultsystem1.dd [DD]*

ApplicationDiagrami.ad [AD]

w || B 24 Default A==
o " L AppDE <Bound> DefaultSystem1 = (] _
2 2 webClient <Bound> Logical Datacenter: LogicalDakacenter! (Documenthame: LogicalDatacenter! [version 1.0.0.0]) [Solutian ‘Samp|
= 2} wsBizLayer <Bound> System: EFAULT B £ Default Sy
g i Defaul
z WehSiteEndpaint 1 = L Solution Tt
o
- 25 Appl
Z:‘t IISwebServerl @ = Dpf ';
) & TsWebserver -| Datal
= a ° IISwebServer2 () Logical
2 @, lIsWebserver B (5 Sample
Puebilient H ° il Proper
= — [ig] Refere]
= P wsBizLayer) classt
DatabaseServerEndpoint ?
+ DatabaseServerl |
i DatahaseServer H
5 |
L
! AppDB |
® 3ru-s
4 | =5 W REC
yalldation of DefaultSystem].dd complete, ¢ errorsiwarnings Found,
4

Figure 2. Mapping an application architecture to the infrastructure ensures that
all the pieces are in place to support the proposed system.

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008

QUALITY DURING
CODING

In the previous section, you saw how Visual Studio Team System 2008 helps
project managers, architects, developers, and testers assure that quality was
in place before coding began. Work items were set up to ensure that quality
of service objectives would be tracked, and the application architecture was
designed and then placed on the infrastructure architecture to ensure that it
would deploy and run on the hardware that was in place.

The next step is to work with the source code, and here Visual Studio Team
System 2008 includes a wealth of tools aimed at supporting and enforcing
the quality of the code. These features include unit testing, static code
analysis, performance profiling, and more.

Source Code Control

Working with source code almost always means a need for source code
control. Even small projects can benefit from the code archiving, differencing,
and searching capabilities provided by the source code control found in
Visual Studio Team System 2008. A great feature in Visual Studio Team
System 2008 is the ability to access the version control system over the
Web, using a separate add-in.

Branching and Merging

One of the techniques that can be of great help in developing systems is
code branching. Before adding a new feature, the code is branched, meaning
a copy is made. The new feature is implemented in a separate branch, and
work on the main “trunk” can continue without being affected by the
development of the new feature. Periodically the code in the branch can be
refreshed to synchronize it with any changes to the main trunk of code. After
the new feature is coded and fully tested, the new branch can be merged
back into the main trunk. In this way, new features are not added to the main
product until they have been tested; this has the added benefit that features
that fail to make the grade can be abandoned without having to remove any
code from the main trunk.

Restoring Previous Versions of Code

As helpful as branching and merging may be, there are times when new
code is compiled and tested and the decision is made to roll back to the
previous version. Source code control doesn’t simply roll back as it used to,
as this doesn’t enable proper tracking under laws such as Sarbanes-Oxley.
Instead, Visual Studio Team System 2008 gives the appearance of rolling
back by taking the chosen previous version and making it the current version
with a new version number. This helps ensure that the system is not taken
offline due to updates that cause issues.

Code Analysis

Static Code Analysis is a process by which code is examined in more detail
than by the compiler—the code is actually checked against a set of rules.

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 5

The results of the checks can raise warnings and errors. This is similar to a
structured code walkthrough except it is performed programmatically rather
than by a room full of people.

Visual Studio Team System 2008 enhances code analysis by adding static
analysis to T-SQL code and checking for quality and security issues. Code
analysis rules for other languages have been enhanced to increase the
accuracy of the suggestions.

Developers can perform code analysis on an ad hoc basis or a project
manager can require it as part of the check in process through a check-in
policy in Team Foundation Server. This ensures that someone has examined
the code and has addressed any errors or warnings. Figure 3 shows that
even simple code can generate warnings, and that you can turn specific
checks on and off as needed.

@0 bizLogic - Microsoft Visual Studic =] 4]
Flle Edit View Project Build Team Debug Data Tools Test Developer Window Help
A-E- Sl $ B9 E-B] b Dby - ény CPU] - HEFGER L
| e | Startrage v X bizlogic - x ﬂ
o :
2 | [Fisbiztogicpath =] 5% adatdouste tumt, double umz) =] I
2 : — Application Lo
T Husing Systerm: - Configuration: |active {Debug) = S
1:’,7 using System.Collections.Generic; =i Buid
E . . i
=l using System.Ling: Platform: |Active (Any CPUY B
i using System.Text: Build Events
&
8l o nemespace bizLogic Rules Enabled During Cade Analysis =
g Debug Desi
= { = esign Rules
public class Math N [CA1000: Do et declare static members an ger
i esources ¥ Ca1001: Types that own disposable fields shoi
double Add{dowble Numi, double Hum2) Services F CA1002: Do not expose generic lists
f ¥ CA1003: Use generic svent handler instances
return Numi + Num2: Settings ¥ Ca1004: Generic methods should provide type
3 ¥ CA1005: avoid excessive parameters on gene-
3 Code Analysis [CA1006: Do not nest generic bypes in member
s [¥ CA1007: Use generics whers appropriate
s I Ca100R: Frime choyld have 20 valie hd
T | v
| I _’l_l

Error List s
@ 0Erors| | 1\ & Warnings ||| (i) 0 Messages
| [pescription | File [Line [coln [Project [«

{3 CAL709 : Microsoft.Naming : Correct the casing of 'biz'in assembly name 'bizLogic’ by changing it to bizLagic
Biz',

44 CALOL4 : Microsoft. Design : Mark bizLogic' with CLSCompliantitrue) because it exposes externally bizLagic
visible types.

45 CALELL: Microsoft. Performance : Math. Add(double, double) appears ko have no upstream public or Math.cs 11 bizLagic
protected callers.

6 CALBZZ : Microsoft.Performance : The this' parameter (or 'Me'in Yisual Basic) of 'Math.Add{double, Math.cs 11 bizLagic o
double) is never Lsed. Mark the member as static (or Shared in Visual Basic) ar use ‘thisTMe' in the (I
method bady or at least one property accessor, I Sppropriate. =<

Ready 4

Figure 3. A simple C# class generates six warnings (bottom) while the rules that
are checked can be turned on and off (upper right).

Performance Profiling

Businesses always want applications to run as quickly as possible, and
developers often compete amongst themselves to have code that runs as
efficiently as possible. Code that runs slowly can be a challenge to debug,
and one tool to help identify problem areas is the Visual Studio Team System
Profiler.

Identifying Performance Bottlenecks with Hot Path

Using the Performance Profiler in Team System, developers can create
performance reports that show the time spent in each part of the application.
Visual Studio 2005 Team System supported this feature but finding the
slowest areas of the application often meant opening a call tree view and

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 6

following the slowest path, expanding until you located the bottleneck. This
could take a tremendous amount of time as the call tree could be deeply
nested (meaning the offending method or framework call might be twenty
levels deep). Hot Path analysis, new to Visual Studio Team System 2008,
adds a toolbar button that automatically expands the call tree to identify
areas that have high inclusion times compared to siblings.

Collecting Windows Counters

Visual Studio Team System 2008 features profiling which developers can
use to collect Windows counter information while an application runs. During
a performance session, developers can choose to collect various
performance counters, such as memory and CPU usage. After running the
application, a developer can examine performance reports to show the
values of those metrics during runtime. Figure 4 shows how to collect various
counters as part of profiling an application.

Performancel Property Pages ed b3

- General
aunch
ampling

inary Counter Category 5 Memory\Pages/sec

nstrumentation I.NET LR Exceptions ﬂ —I '\PhysicalDisk({_Tokal)\A4vg, Disk Gueue Length

PU Counters »l \Processor(_Total)}%. Processor Time
Instance

indows Events

indows Counters I_Global_ ﬂ ﬁl

*- Advanced # of Exceps Thrown _<|
of Exceps Thrown | sec

of Filters | sec

of Finallys | sec

Throw To Catch Depth [sec

Collection interval {msecs): 500

Windows Counters

‘Windows Counters are system performance counters that can be collecked at regular intervals during -
profiling. In the Marks view, there is & row labeled “autoMark” For each collection inkerwval. The row contains
colurmns that describe the performance counter values at that interval, To restrict the analysis to a period of
time bebween bwo particular marks, select the marks, right-click, and then choose “Filker By Marks™,

|
(0] I Cancel | Apply |
Figure 4. You can collect Windows counters during the profiling of an

application, showing such items as the memory and CPU usage as the
application runs.

Unit Testing

When most people think of ensuring quality for applications, they think of
functional testing; that is, testing the application after it is complete to one
degree or another. However, there has been a trend over the past 7-10 years
to test the code early and often during the development phase using unit
testing. This is done using the same language as the code rather than

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 7

learning a new testing language, and it is set up in such a way that tests can
be run at nearly any time to verify that the code, as written, passes the tests
that have been created. At first, this helps ensure that the code is functioning
properly, assuming the tests cover the required functionality of the code.
Later, the unit tests help support changes because developers can always
rerun existing tests to make sure they have not broken functionality that used
to work.

Test-Driven Development

Test-Driven Development (TDD), also known as Test-First Development, is a
development paradigm that says a developer writes a test before writing any
code. After they’'ve written the test, the developer writes just enough code to
get the test to pass. Once the test passes, the developer writes the next test
and writes enough code to get that test to pass, making sure that no previous
tests break. Through this process, a suite of unit tests are created and the
code is verified as passing all tests.

First class support for unit tests can be found in Visual Studio Team System
2008 as well as the Visual Studio Professional 2008 products. Through the
creation of test projects, users can add unit tests to a solution and then run
them at any time, showing success or failure through a simple green light/red
light metaphor. Of course, unit tests can also be run as part of an automated
build process.

Real-world Quality from TDD

Unit testing can certainly be done without implementing TDD, but TDD has
been proven effective in university studies. Dr. Laurie Williams, a professor at
North Carolina State University, performed a study that found that defects
identified by customers were 30% lower for a system using TDD than for a
previous version of the system that did not . Another study found that 95.8%
of developers felt that TDD reduced the debugging effort .

Code Coverage

When creating unit tests, the goal is to write a test and then write the code
that causes the test to pass. In reality, developers often write more code than
is required and therefore might write code for tests which do not exist. A
common example is the case of an If statement in which one branch is never
tested. Team System includes a code coverage tool that shows the
percentage of code covered by tests, the percentage not covered, and more
importantly, color codes the source code to easily identify lines that were and
lines that were not touched by unit tests. Figure 5 shows the code coverage
results for two simple methods in a Visual Basic class.

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 8

@¥ bizLogic - Microsoft Yisual Studio =10] x|

Fle Edt View Project Buld Team Debug Dgta Tools Tegt Developer Window Help

A-A-SH@ 4 am9-o-H-B] b o - Any CPu - | REGEE

B % % |6 0| B R EER|E]E =, b |EE|= 2O i 3 &5 R
E TFSSETUP@ORCA. . 2-27 23:35:42 | UitTestl vb* Math.vb | “Start Page | r X F
= 5
2 || [%math = [Feniie I |
H

m|l| EPwlic Class ach = (11
i Public Function hdd(ByVal Numl As Double, ByVal NumZz is Double) As Double I—

r Return Numl + Num2 B
?) End Function E|le
z

= Public Functcion Divide (ByVal Numl As Double, ByWal Num2z As Double) As Double
2| If NumZ <> O Then

Return Numl / Num2
Elz=
Return 0O
End If
End Function
End Class
4 | _'l_I

ults

TFSSETUP@ORCASBETAZTFS 2007-12-27 23:4C ~ | 2

ELT
B¢ Craighath.di [}
=-{} CraigMath 3
-4 Math 3

{4 Add(floatéd,floatéd) 0

"=t Divide{floated,flost,., 3

S

-4} Craighath. My 100,00 %

Js1»
=] Output | =] Code Coverage Results |»,_=;|Test Results ‘
Ready A

Figure 5. Code coverage results shows that Else portion of the If statement is
not touched by any of the unit tests that were just run.

Database Unit Testing

While unit testing is normally considered a tool for source code in
programming languages such as C# and Visual Basic, there are applications
for unit testing with T-SQL in areas such as triggers and stored procedures.
Visual Studio Team System 2008 Database Edition includes tools to create
and run unit tests for stored procedures and triggers. The unit test, as well as
other database artifacts — including database schemas — in source code
control. This enables developers to treat databases as first-class citizens with
the source code, ensuring that changes to stored procedures and triggers
can be tested and then deployed only if all tests pass.

Reporting Progress to Stakeholders

Project stakeholders, be they inside the IT organization or in other areas of
the business, are able to access a project portal that is created as part of the
Team System project. This portal is hosted in SharePoint and contains a
series of preconfigured SQL Server Reporting Services reports. By using
these reports, stakeholders can monitor the progress of the application
through bug tracking statistics, testing success rates, and more. These
reports are always up to date because they access the Team System
database in real time. This provides an excellent resource for customers
throughout the organization to keep apprised of the project’s progress.

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 9

QUALITY AFTER CODING

So far, quality checks have been done before any coding started, and then
throughout the coding process. Naturally, testing can be continued when the
application is turned over to a testing team. Fortunately, Visual Studio Team
System and Team Foundation Server can automate the building and testing
of applications to a large degree.

Automated Builds and Testing

Visual Studio Team System includes an automated build engine called Team
Build. This build engine enables a variety of build definitions to support
regularly scheduled builds, release builds and an agile technique known as
continuous integration builds—a process in which builds occur either
immediately after a check-in, or in short intervals, queuing a small number of
check-ins before a build. A Team Build definition can be created to enable
one to check out the source code, compile it, run static code analysis and
unit tests, deploy the code to a test server, run Web and load tests, and
publish results of the build and associated tests.

Web and Load Tests

There are a couple of different kinds of tests that can occur after the
application has been created. These include Web tests, which may or may
not be used to perform load tests.

Web Tests

Web tests are a way to test the functionality of a Web application.
Developers often record such a test when a user walks through the process
of using a Web application, which records the HTTP Requests and
Responses. In addition, Web tests can support ASP.NET AJAX, enabling for
testing of rich Web applications that include client-side code. Team System
can do more than simply record a Web test—it can enable developers to pull
selections from a database, XML file, or CSV file. For example, imagine that
a user drops down a combo box and selects an item. The test can be
configured to pull the items from a database or file and randomly select one
for each test, providing a more realistic test suite by simulating the selections
of different values rather than always choosing just the one that the user
picked during the recording.

Load Tests

Load testing in Team System is powerful because it enables for Web tests,
manual tests, generic tests, or any combination of such tests to be
automated. Team System 2008 introduces a new User Pace test mix, which
enables developers to control the mix between different test types and the
number of simulated users can increase over time. For example, one test
may test the order entry system while another may test the account update
feature. Each user could be set to run ten order entry tests but just one
account update test every hour. Load tests are useful for finding bottlenecks

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 10

not just in the application (recall the ability to add performance counters to
code) but also hardware bottlenecks. Different browsers can be simulated
with Web tests and performance counters from target machines can be
captured for later analysis of the load resulting from different browsers and
different access methods. Different network bandwidth types can be
simulated to cover local and remote access scenarios and check for both
performance and load issues.

Once the load testing has started, performance can be monitored in real
time. After the tests are over, statistics are captured for review and analysis.

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 11

CONCLUSION

Visual Studio Team System 2008 provides a series of powerful, integrated
tools that assist organizations with ensuring the highest quality in their
software development throughout the application life cycle. From up front
planning through coding to delivery, people at every phase verify, test,
profile, monitor, and track quality. Even those outside the IT organization can
see the progress through the project portal that is automatically updated as
the project progresses.

Architects design the physical application and apply it to the existing
architecture (or design a new architecture to support the application.) The
design can be verified before a single line of code is written. Developers
create unit tests to not only ensure that their code works, but to verify that
future work does not break existing functionality. Developers can also see
what parts of their code are not covered by unit tests, quickly find
performance bottlenecks, and obtain suggestions for improving their code.
Testers create and run automated tests to check for performance and
functionality issues, monitoring a variety of counters on remote servers and
in the application. Anyone in the process or even outside of IT can monitor
the progress by tracking bugs, test results, and more, using the Team
Foundation Server portal.

Visual Studio Team System 2008 breaks new ground in integrated support
for built-in quality features. The tools and features provide an end-to-end
solution for verifying and testing the application, and supporting the
development team at each step by providing timely and actionable feedback.

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 12

ABOUT THE AUTHOR Craig Utley (craig@solidg.com) is a mentor with Solid Quality Mentors and a
former Program Manager on the SQL Server Customer Advisory Team at
Microsoft. He splits his time between providing business intelligence
solutions and consulting on developer productivity issues, including design
patterns, test-driven development, and agile methodologies.

This white paper was developed in partnership with A23 Consulting.

White Paper: Ensure Quality Early and Often with Visual Studio Team System 2008 13

